Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers

نویسندگان

  • C. J. Daniels
  • A. J. Poulton
  • M. Esposito
  • M. L. Paulsen
  • R. Bellerby
  • M. St John
  • A. P. Martin
چکیده

The spring bloom is a key annual event in the phenology of pelagic ecosystems, making a major contribution to the oceanic biological carbon pump through the production and export of organic carbon. However, there is little consensus as to the main drivers of spring bloom formation, exacerbated by a lack of in situ observations of the phytoplankton community composition and its evolution during this critical period. We investigated the dynamics of the phytoplankton community structure at two contrasting sites in the Iceland and Norwegian basins during the early stage (25 March– 25 April) of the 2012 North Atlantic spring bloom. The plankton composition and characteristics of the initial stages of the bloom were markedly different between the two basins. The Iceland Basin (ICB) appeared well mixed down to > 400 m, yet surface chlorophyll a (0.27–2.2 mg m) and primary production (0.06–0.66 mmol C m d) were elevated in the upper 100 m. Although the Norwegian Basin (NWB) had a persistently shallower mixed layer (< 100 m), chlorophyll a (0.58–0.93 mg m) and primary production (0.08–0.15 mmol C m d) remained lower than in the ICB, with picoplankton (< 2 μm) dominating chlorophyll a biomass. The ICB phytoplankton composition appeared primarily driven by the physicochemical environment, with periodic events of increased mixing restricting further increases in biomass. In contrast, the NWB phytoplankton community was potentially limited by physicochemical and/or biological factors such as grazing. Diatoms dominated the ICB, with the genus Chaetoceros (1–166 cells mL) being succeeded by Pseudo-nitzschia (0.2–210 cells mL). However, large diatoms (> 10 μm) were virtually absent (< 0.5 cells mL) from the NWB, with only small nano-sized (< 5 μm) diatoms (i.e. Minidiscus spp.) present (101–600 cells mL). We suggest microzooplankton grazing, potentially coupled with the lack of a seed population of bloom-forming diatoms, was restricting diatom growth in the NWB, and that large diatoms may be absent in NWB spring blooms. Despite both phytoplankton communities being in the early stages of bloom formation, different physicochemical and biological factors controlled bloom formation at the two sites. If these differences in phytoplankton composition persist, the subsequent spring blooms are likely to be significantly different in terms of biogeochemistry and trophic interactions throughout the growth season, with important implications for carbon cycling and organic matter export. Published by Copernicus Publications on behalf of the European Geosciences Union. 2396 C. J. Daniels et al.: Spring bloom phytoplankton composition

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities

Phytoplankton community composition profoundly affects patterns of nutrient cycling and the dynamics of marine food webs; therefore predicting present and future phytoplankton community structure is crucial to understand how ocean ecosystems respond to physical forcing and nutrient limitations. We develop a mechanistic model of phytoplankton communities that includes multiple taxonomic groups (...

متن کامل

Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom

[1] Satellite measurements allow global assessments of phytoplankton concentrations and, from observed temporal changes in biomass, direct access to net biomass accumulation rates (r). For the subarctic Atlantic basin, analysis of annual cycles in r reveals that initiation of the annual blooming phase does not occur in spring after stratification surpasses a critical threshold but rather occurs...

متن کامل

Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms.

Springtime phytoplankton blooms photosynthetically fix carbon and export it from the surface ocean at globally important rates. These blooms are triggered by increased light exposure of the phytoplankton due to both seasonal light increase and the development of a near-surface vertical density gradient (stratification) that inhibits vertical mixing of the phytoplankton. Classically and in curre...

متن کامل

Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms

A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseob...

متن کامل

Seasonal Succession of Free-Living Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula

The marine ecosystem along the Western Antarctic Peninsula undergoes a dramatic seasonal transition every spring, from almost total darkness to almost continuous sunlight, resulting in a cascade of environmental changes, including phytoplankton blooms that support a highly productive food web. Despite having important implications for the movement of energy and materials through this ecosystem,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015